AgricEng Logo

Assessment of the Pine Forests Condition Using Forest Factors, Physiological Characteristics and Remote Detection Data

Authors

  • Mariusz Szymanek

    {"en_US":"university of life sciences in lublin."}
  • Wojciech Tanaś

    {"en_US":"university of life sciences in lublin."}
  • Alexander Pugachevsky

    {"en_US":"university of life sciences in lublin."}
  • Alexander Sazonov

    {"en_US":"university of life sciences in lublin."}
  • Sergey Kostyukevich

    {"en_US":"university of life sciences in lublin."}
  • Mikhail Kudin

    {"en_US":"university of life sciences in lublin."}
  • Anatoly Puchilo

    {"en_US":"university of life sciences in lublin."}
  • Oleg Semyonov

    {"en_US":"university of life sciences in lublin."}
  • Vladimir Shukanov

    {"en_US":"university of life sciences in lublin."}

DOI:

https://doi.org/10.2478/agriceng-2021-0003

Keywords:

forest monitoring, biochemical analyzes, vegetation indices, remote sensing

Abstract

This paper evaluates the pathological condition of Belarusian forests with the use of monitoring of traditional forest factors and remote sensing data. The aim of the research was to assess the condition of pine forests to monitor forest degradation based on biochemical analyzes of needle samples and aviation monitoring with the use of monitoring data and remote detection. The remote shooting was carried out quasi-synchronously with the ground sampling of needles using an unmanned aircraft complex of an aircraft type. Based on the results of biochemical analyzes of needle samples, biochemical indicators that characterize the stability and physiological state of pine were determined: the level of peroxidation of membrane lipids; the release of water-soluble substances from plant tissues, which reflect the integrity of the cell walls; the content of photosynthetic pigments in the needles.

References

Bertram, C., Rehdan, K. (2015). The role of urban green space for human well-being. Ecological Economics, 120, 139-152.

Bjerreskov, K.S., Nord-Larsen, T., Fensholt, R. (2021). Classification of Nemoral Forests with Fusion of Multi-Temporal Sentinel-1 and 2 Data. Remote Sensing, 13, 950. https://doi.org/10.3390/rs13050950

Boyd, D.S., Entwistle, J.A., Flowers, A.G. (2006). Armitage, R.P.; Goldsmith, P.C. Remote sensing the radionuclide contaminated Belarusian landscape: A potential for imaging spectrometry? International Journal of Remote Sensing, 27, 1865-1874.

Brady, C., Denman, S., Kirk, S., Venter, S., Rodríguez-Palenzuela, P., Coutinho, T.(2010). Description of Gibbsiella quercinecans gen. nov., sp. nov., associated with Acute Oak Decline. Systematic and Applied Microbiology, 33(8), 444-450.

Brasier, C.M. (2001). Rapid evolution of introduced plant pathogens via interspecific hybridization. BioScience, 51(2), 123-133.

Bumann, E. (2017). Assessing Responses of Betula papyrifera (Paper Birch) to Climate Variability in a Remnant Population Along the Niobrara River in Nebraska Through Dendroecological and Remote Sensing Techniques (Dissertations & Theses in Natural Resources 161). Lincoln, Nebraska.

Carter, G.A., Knapp, A.K. (2001). Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration. American Journal of Botany, 88, 677-684.

Denman, S., Barrett, G., Kirk, S.A., McDonald, J.E., Coetzee, M.P.A. (2017). Identification of Armillaria species on oak in Britain: Implications for Oak Health. Forestry, 90 (1), 148-161.

De Vos, C.H.R. (1989). Copper-induced damage to the permeability barrier in roots of Silene cucubalus. C.H.R. De Vos, H. Schat, R. Vooijs, W.H.O. Ernst. Journal of Plant Physiology, 135, 164-169. https://doi.org/10.1016/S0176-1617(11)81001-1.

Fassnacht, F.E., Latifi, H., Stereńczak, K., Modzelewska, A., Lefsky, M., Waser, L.T., Straub, C., Ghosh, A. (2016). Review of studies on tree species classification from remotely sensed data. Remote Sensing of Environment, 186, 64-87.

Fortin, J.A., Cardille, J.A., Perez, E. (2020). Multi-sensor detection of forest-cover change across 45 years in Mato Grosso, Brazil. Remote Sensing of Environment, 238, 111-266.

Gyllenhal (1827). Berninelsonius hyperboreus, GBIF Backbone Taxonomy. Checklist dataset https://doi.org/10.15468/39omei accessed via GBIF.org on 2021-03-26.

Han, Q., Kawasaki, T., Nakano, T., Chiba, Y. (2008) Leaf-age effects on seasonal variability in photo-synthetic parameters and its relationships with leaf mass per area and leaf nitrogen concentration within a Pinus densiflora crown. Tree Physiology, 28, 551-558

Hodges, D.M., Lester, G.E., Munro, K.D., Toivonen, P.M.A. (2004). Oxidative stress: important for postharvest quality. Hortscience, 39, 924-929.

Ito, H., Takaichi, S., Tsuji, H., Tanaka, A. (1994). Properties of synthesis of chlorophyll a from chlorophyll b in cucumber etioplasts. Journal of Biological Chemistry, 269, 22034-22038.

Kaufmann, R.K., D’Arrigo, R. D., Laskowski, C., Myneni, R. B., Zhou, L., & Davi, N. K. (2004). The efect of growing season and summer greenness on northern forests. Geophysical Research Letters.

Kozhushko, N.N. (1976). Methods for assessing plant resistance to unfavorable environmental conditions. N.N. Kozhushko. Ed. G.V. Udovenko. - L .: Kolos, 33-43.

Lu, M., Chen, B., Liao, X., Yue, T., Yue, H., Ren, S., Li, X., Nie, Z., Xu, B. (2017). Forest Types Classification Based on Multi-Source Data Fusion. Remote Sensing, 9, 11-53.

Lukeš, P., Stenberg, P., Rautiainen, M., Mõttus, M., Vanhatalo, K. (2013). Optical properties of leaves and needles for boreal tree species in Europe. Remote Sensing Letters, 4 (7), 667-676.

Lukyanets,V., Lisnyak, A., Tarnopilska, O., Musienko, S., Garbuz, A. & Kraynukov, A. (2019). Physical and chemical properties of soils in potential approaches of volynic polisse, violated by root sponge, Folia Geographica, 61 (1), 98-119. www.foliageographica.sk/unipo/journals/2019-61-1/524.

Luther, J.E., Carroll, A.L. (1999). Development of an index of balsam fir vigor by foliar spectral reflectance. Remote Sensing of Environment, 69, 241-252.

Masaitis, G., Mozgeris, G., Augustaitis, A. (2013). Spectral reflectance properties of healthy and stressed coniferous trees. iForest, 6, 30-36

Mirkovic T., Ostroumov, E.E., Anna, J.M., Van Grondelle, R., Govindjee Van, G., Scholes, G.D. (2017). Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chemical Reviews, 117, 249-29.

Ohtsuka T., Ito, H., Tanaka, A. (1997). Conversion of chlorophyll b to chlorophyll a and the assembly of chlorophyll with apoproteins by isolated chloroplasts. Plant Physiology, 113, 137-147.

Penuelas, J., Marino, M., Llusia, J., Morfopoulos, C., Farre-Armengol, G., Filella, I. (2013). Photo-chemical reflectance index as an indirect estimator of foliar isoprenoid emissions at the ecosystem level. Nature Communications, 4, 2604, 1-10.

Plakman, V., Janssen, T., Brouwer, N., Veraverbeke, S. (2020). Mapping Species at an Individual-Tree Scale in a Temperate Forest, Using Sentinel-2 Images, Airborne Laser Scanning Data, and Random Forest Classification. Remote Sensing, 12, 3710. https://doi.org/10.3390/rs12223710.

Pochinok, Kh. N. (1976). Methods of biochemical analysis of plants. Kiev: Nauk. Dumka, 213-216.

Rajasekaran, L.R., Blake, T.J. (1999). New plant growth regulators protect photosynthesis and enhance growth of jack pine seedlings. Journal of Plant Growth Regulation, 18, 175-181.

Roughgarden, J., Running, S.W., Matson, P.A. (1991). What Does Remote Sensing Do for Ecology? Ecology, 72, 1918-1922.

Sazonov, A.A. (2016). “Biological fire” of the pine forest. А.А. Sazonov, V.B. Zvagintsev. Forestry and hunting, 6, 9-13. http://www.mlh.by/lioh/2016-6/3.pdf (in Russian).

Sazonov, A.A. (2017). Forest management in conditions of bark beetle drying out of pine. A.A. Sazonov, V.B. Zvyagintsev, V.N. Kukhta, P.V., Tupin P.W. Dead. Practical guide, 1, 1-11. https://docplayer.ru/70899289-Vedenie-lesnogo-hozyaystva-v-usloviyah-koroednogo-usyhaniyasosny.html (in Russian).

Sazonov, A.A. (2018a). Mass drying of pine forests in Belarus: features, causes, consequences. A.A. Sazonov, V.B. Zvyagintsev. X Readings in memory of O.A. Kataeva. Dendrobiontic invertebrates and fungi and their role in forest ecosystems. T.2. Phytopathogenic fungi, problems of pathology and forest protection / Mat. int. conf. 22-25 October SPb. SPbGLTU, 28-29. DOI: 10.21266/SPBFTU.2018.KATAEV.2 (in Russian).

Sazonov, A.A. (2018b). Assess the threat in pine forests. Forestry and hunting, 6 (179), 33-37. https://elib.belstu.by/bitstream/123456789/30291/1/Sazonov_Analiz_struktury.pdf (in Russian).

Sazonov A.A., Zviagintsev V.B. (2019). Analysis of the forest protective activities structure in 3the origins of pine root rot. Trudy BGTU, 9(1), 126-131. UDC 630*4, https://elib.belstu.by/bit-stream/123456789/30291/1/Sazonov_Analiz_struktury.pdf (in Russian).

Shlyk, A.A. (1971). Determination of chlorophyll and carotenoids in extracts of green leaves. Biochemical methods in plant physiology, Ed. Pavlinova O.A. -M .: Nauka, 154-170.

Shlyk, A.A. (1968). Spectrophotometric determination chlorophylls a and b, Biokhimiya, 33, 275-285.

Ulmer, J.M., Wolf, K.L., Backman, D.R., Tretheway, R.L., Blain, C.J., O’Neil-Dunne, J.P., Frank, L.D. (2016). Multiple health benefits of urban tree canopy: The mounting evidence for a green prescription. Health & Place, 42, 54-62.

Volchenkova, G.A., Zviagintsev, V.B., Zhdanovich, S.A. (2014). Ranking of silvicultural areas by the threat of annosum root rot in pine stands. ISSN 1683-0377. Proceedings of BSTU, 1, 136-139. Forestry, UDC 632.92: 630*443.3.

https://elib.belstu.by/bitstream/123456789/14658/1/39.volchenkovazvyagincevzhdanovich.pdf (in Russian).

Yang, S.F., Hoffman, N.E. (1984). Ethylene biosynthesis and its regulation in higher plants. Annual Review of Plant Physiology, 35, 155-187. 10.1146/annurev.pp.35.060184.001103.

Wang, K.; Franklin, S.E.; Guo, X.; Cattet, M. (2010). Remote sensing of ecology, biodiversity and conservation: A review from the perspective of remote sensing specialists. Sensors 10, 9647-9667.

Warren, C.R. (2006). Why does photosynthesis decrease with needle age in Pinus pinaster? Trees – Structure and Function, 20, 157-164.

Wolter, P.P., Townsend, P.A. (2011). Multi-sensor data fusion for estimating forest species composition and abundance in northern Minnesota. Remote Sensing of Environment, 115, 671-691

Zvagintsev, V.B. (2014). Bark beetle desiccation of pine (Pinus sylvestris L.) in the forests of Belarus. V.B. Zvyagintsev, A.A. Sazonov. VIII Readings in memory of O.A. Kataeva. Pests and diseases of woody plants in Russia. Materials of Intern. conf. 18–20 November 2014 SPb. SPbGLTU, p. 34 https://www.belstu.by/Portals/0/Zviagintsev-Sazonov-2014.pdf (in Russian).

Downloads

Published

2021-05-24

Issue

Section

Articles

How to Cite

Assessment of the Pine Forests Condition Using Forest Factors, Physiological Characteristics and Remote Detection Data. (2021). Agricultural Engineering , 25, 29-49. https://doi.org/10.2478/agriceng-2021-0003

Most read articles by the same author(s)