Anaerobic Digestion and Composting as Methods of Bio-Waste Management
DOI:
https://doi.org/10.2478/agriceng-2023-0013Keywords:
biomass, waste, anaerobic digestion, composting, circular economy, waste managementAbstract
The management of biodegradable waste from various sectors of economy is an essential element in terms of environmental protection. The paper discusses issues related to the possibility of bio-waste treatment using anaerobic digestion technologies and composting processes, highlighting the conditions for the processes and their advantages and disadvantages. The challenges of overproduction of bio-waste faced by highly developed countries around the world are also presented. Research showed that the anaerobic digestion of this waste combines both biofuel production and a circular economy. The popularity of this method is linked, among others to a low cost of raw materials and wide range of possible uses for biogas (i.e. electricity, heat, or biomethane). In addition, an alternative bio-waste management option, compost production, was discussed. The study aimed to compare anaerobic and aerobic bio-waste management processes.
References
Abdelsalam, E. M., Samer, M., Amer, M. A., & Amer, B. M. (2021). Biogas production using dry fermentation technology through co-digestion of manure and agricultural wastes. Environment, Development and Sustainability, 23(6), 8746-8757. https://doi.org/10.1007/s10668-020-00991-9
Ajmal, M., Shi, A., Awais, M., Mengqi, Z., Zihao, X., Shabbir, A., Faheem, M., Wei, W., & Ye, L. (2021). Ultra-high temperature aerobic fermentation pretreatment composting: Parameters optimization, mechanisms and compost quality assessment. Journal of Environmental Chemical Engineering, 9(4), 105453. https://doi.org/10.1016/j.jece.2021.105453.
Alessi, A., Lopes, A. D. C. P., Müller, W., Gerke, F., Robra, S., & Bockreis, A. (2020). Mechanical separation of impurities in biowaste: Comparison of four different pretreatment systems. Waste Management, 106, 12-20. https://doi.org/10.1016/j.wasman.2020.03.006
Awais, M., Li, W., Munir, A., Omar, M. M., & Ajmal, M. (2021). Experimental investigation of downdraft biomass gasifier fed by sugarcane bagasse and coconut shells. Biomass Conversion and Biorefinery, 11, 429-444. https://doi.org/10.1007/s13399-020-00690-5
Ayilara, M. S., Olanrewaju, O. S., Babalola, O. O., & Odeyemi, O. (2020). Waste management through composting: Challenges and potentials. Sustainability, 12(11), 4456. https://doi.org/10.3390/su12114456.
Azim, K., Soudi, B., Boukhari, S., Perissol, C., Roussos, S., & Thami Alami, I. (2018). Composting parameters and compost quality: a literature review. Organic agriculture, 8, 141-158. 10.1007/s13165-017-0180-z
Balanda, O., Serafinowska, D., Marchenko, O., Svystunova, I. (2022). Innovative Technology of Accelerated Composting of Chicken Manure to Obtain an Organic Fertilizer with a High Content of Humic Acids. Agricultural Engineering, 26(1) 133-144. https://doi.org/10.2478/agriceng-2022-0011
Baron, V., Saoud, M., Jupesta, J., Praptantyo, I. R., Admojo, H. T., Bessou, C., & Caliman, J. P. (2019). Critical parameters in the life cycle inventory of palm oil mill residues composting. Indonesian Journal of Life Cycle Assessment and Sustainability, 3(1), https://doi.org/10.52394/ijolcas.v3i1.72
Barrón-Santos, F. J., Gutiérrez-Castillo, M. E., Tovar-Gálvez, L. R., Teresa, M., Núñez-Cardona, R. E. N., Tapia, C. R., & Espitia-Cabrera, A. (2021). Improving Compost Process Efficiency by Leachates Inoculation and Shredding of the Organic Fraction of Municipal Solid Waste at Bordo Poniente Composting Plant, Mexico City. Journal of Environmental Science and Engineering, 10, 177-183. 10.17265/2162-5298/2021.05.003
Barthod, J., Rumpel, C., & Dignac, M. F. (2018). Composting with additives to improve organic amendments. A review. Agronomy for Sustainable Development, 38(2), 17. https://doi.org/10.1007/s13593-018-0491-9.
Bharathiraja, B., Sudharsana, T., Jayamuthunagai, J., Praveenkumar, R., Chozhavendhan, S., & Iyyappan, J. (2018). Biogas production–A review on composition, fuel properties, feed stock and principles of anaerobic digestion. Renewable and sustainable Energy reviews, 90, 570-582. https://doi.org/10.1016/j.rser.2018.03.093
Bojarski, W., Czekała, W., Nowak, M., & Dach, J. (2023). Production of compost from logging residues. Bioresource Technology, 376, 128878. https://doi.org/10.1016/j.biortech.2023.128878
Borek, K., & Romaniuk, W. (2020a). Biogas installations for harvesting energy and utilization of natural fertilisers. Agricultural Engineering, 24(1), 1-14. https://doi.org/10.1515/agriceng-2020-0001
Borek, K., & Romaniuk, W. (2020b). Possibilities of obtaining renewable energy in dairy farming. Agricultural Engineering, 24(2), 9-20. https://doi.org/10.1515/agriceng-2020-0012
Borek, K., Romaniuk, W., Roman, K., Roman, M., & Kuboń, M. (2021). The Analysis of a Prototype Installation for Biogas Production from Chosen Agricultural Substrates. Energies 2021, 14(8), 2132. https://doi.org/10.3390/en14082132
Cáceres, R., Malińska, K., & Marfà, O. (2018). Nitrification within composting: A review. Waste Management, 72, 119-137. https://doi.org/10.1016/j.wasman.2017.10.049
Cecchi, F., & Cavinato, C. (2015). Anaerobic digestion of bio-waste: A mini-review focusing on territorial and environmental aspects. Waste Management & Research, 33(5), 429-438. https://doi.org/10.1177/0734242X14568610
Cerda, A., Artola, A., Font, X., Barrena, R., Gea, T., & Sánchez, A. (2018). Composting of food wastes: Status and challenges. Bioresource technology, 248, 57-67. https://doi.org/10.1016/j.biortech.2017.06.133
Chang, H. Q., Zhu, X. H., Wu, J., Guo, D. Y., Zhang, L. H., & Feng, Y. (2021). Dynamics of microbial diversity during the composting of agricultural straw. Journal of Integrative Agriculture, 20(5), 1121-1136. https://doi.org/10.1016/S2095-3119(20)63341-X
Czekała, W. (2021). Solid Fraction of Digestate from Biogas Plant as a Material for Pellets Production. Energies, 14(16), 5034. https://doi.org/10.3390/en14165034
Czekała, W. (2022). Digestate as a Source of Nutrients: Nitrogen and Its Fractions. Water, 14(24), 4067. https://doi.org/10.3390/w14244067
Czekała, W., Nowak, M., & Bojarski, W. (2023). Characteristics of Substrates Used for Biogas Production in Terms of Water Content. Fermentation, 9(5), 449. https://doi.org/10.3390/fermentation9050449
Czekała, W., Janczak, D., Pochwatka, P., Nowak, M., & Dach, J. (2022). Gases Emissions during Composting Process of Agri-Food Industry Waste. Applied Sciences, 12, 9245. https://doi.org/10.3390/app12189245
Dach, J., Pulka, J., Janczak, D., Lewicki, A., Pochwatka, P., & Oniszczuk, T. (2020). Energetic Assessment of Biogas Plant Projects Based on Biowaste and Maize Silage Usage. In IOP Conference Series: Earth and Environmental Science, 505(1), 012029. https://doi.org/10.1088/1755-1315/505/1/012029
Dalahmeh, S. S., Thorsén, G., & Jönsson, H. (2022). Open-air storage with and without composting as post-treatment methods to degrade pharmaceutical residues in anaerobically digested and de-watered sewage sludge. Science of the Total Environment, 806, 151271. https://doi.org/10.1016/j.scitotenv.2021.151271
Demichelis, F., Piovano, F., & Fiore, S. (2019). Biowaste management in Italy: Challenges and perspectives. Sustainability, 11(15), 4213. https://doi.org/10.3390/su11154213
Enebe, M. C., & Erasmus, M. (2023). Mediators of biomass transformation–a focus on the enzyme composition of the vermicomposting process. Environmental Challenges, 12, 100732. https://doi.org/10.1016/j.envc.2023.100732
Ge, M., Shen, Y., Ding, J., Meng, H., Zhou, H., Zhou, J., Cheng, H., Zhang, X., Wang, J., Wang, H., Cheng, Q., Li, R., & Liu, J. (2022). New insight into the impact of moisture content and pH on dissolved organic matter and microbial dynamics during cattle manure composting. Bioresource Technology, 344, 126236. https://doi.org/10.1016/j.biortech.2021.126236
Ghosh, S. K. (2016). Biomass & bio-waste supply chain sustainability for bio-energy and bio-fuel production. Procedia Environmental Sciences, 31, 31-39. https://doi.org/10.1016/j.proenv.2016.02.005
Glivin, G., Kalaiselvan, N., Mariappan, V., Premalatha, M., Murugan, P. C., & Sekhar, J. (2021). Conversion of biowaste to biogas: A review of current status on techno-economic challenges, policies, technologies and mitigation to environmental impacts. Fuel, 302, 121153. https://doi.org/10.1016/j.fuel.2021.121153
Główny Urząd Statystyczny. (2018). Ochrona środowiska 2018. Warszawa: Wydawnictwo GUS.
Główny Urząd Statystyczny. (2019). Ochrona środowiska 2019. Warszawa: Wydawnictwo GUS.
Główny Urząd Statystyczny. (2020). Ochrona środowiska 2020. Warszawa: Wydawnictwo GUS.
Główny Urząd Statystyczny. (2021). Ochrona środowiska 2021. Warszawa: Wydawnictwo GUS.
Główny Urząd Statystyczny. (2022). Ochrona środowiska 2022. Warszawa: Wydawnictwo GUS.
Graça, J., Murphy, B., Pentlavalli, P., Allen, C. C., Bird, E., Gaffney, M., Duggan, T., & Kelleher, B. (2021). Bacterium consortium drives compost stability and degradation of organic contaminants in in-vessel composting process of the mechanically separated organic fraction of municipal solid waste (MS-OFMSW). Bioresource Technology Reports, 13, 100621. https://doi.org/10.1016/j.biteb.2020.100621
Haouas, A., El Modafar, C., Douira, A., Ibnsouda-Koraichi, S., Filali-Maltouf, A., Moukhli, A., & Amir, S. (2021). Evaluation of the nutrients cycle, humification process, and agronomic efficiency of organic wastes composting enriched with phosphate sludge. Journal of Cleaner Production, 302, 127051. https://doi.org/10.1016/j.jclepro.2021.127051
Hemidat, S., Jaar, M., Nassour, A., & Nelles, M. (2018). Monitoring of composting process parameters: a case study in Jordan. Waste and Biomass Valorization, 9, 2257-2274. https://doi.org/10.1007/s12649-018-0197-x.
Jakubowski, T., & Sołowiej, P. (2016). Dynamics of temperature changes in thermophille phase of composting process in the aspect of sanitary condition of obtained material. Agricultural Engineering, 20(4), 69-75. https://doi.org/10.1515/agriceng-2016-0065.
Jędrczak, A. (2018). Composting and fermentation of biowaste-advantages and disadvantages of processes. Civil and Environmental Engineering Reports, 28(4), 71-87. https://doi.org/10.2478/ceer-2018-0052.
Keng, Z. X., Chong, S., Ng, C. G., Ridzuan, N. I., Hanson, S., Pan, G. T., Lau, P. L., Supramaniam, C. V., Singh, A., Chin, C. F., & Lam, H. L. (2020). Community-scale composting for food waste: A life-cycle assessment-supported case study. Journal of Cleaner Production, 261, 121220.https://doi.org/10.1016/j.jclepro.2020.121220.
Koryś, K.A., Latawiec, A.E., Grotkiewicz, K., & Kuboń, M. (2019). The Review of Biomass Potential for Agricultural Biogas Production in Poland. Sustainability, 11, 6515. https://doi.org/10.3390/su11226515
Kovačić, Đ., Lončarić, Z., Jović, J., Samac, D., Popović, B., & Tišma, M. (2022). Digestate Management and Processing Practices: A Review. Applied Sciences, 12(18), 9216. https://doi.org/10.3390/app12189216
Kucher, O., Hutsol, T., Glowacki, S., Andreitseva, I., Dibrova, A., Muzychenko, A., Szeląg-Sikora, A., Szparaga, A., & Kocira, S. (2022). Energy Potential of Biogas Production in Ukraine. Energies, 15, 1710. https://doi.org/10.3390/en15051710
Kukharets, S., Hutsol, T., Glowacki, S., Sukmaniuk, O., Rozkosz, A. Tkach, O. (2021). Concept of Biohydrogen Production by Agricultural Enterprises. Agricultural Engineering, 25(1), 63-72. https://doi.org/10.2478/agriceng-2021-0005
Luangwilai, T., Sidhu, H., & Nelson, M. (2021). Understanding the factors affecting the self-heating process of compost piles: Two-dimensional analysis. ANZIAM Journal, 63, C15-C29. https://doi.org/10.21914/anziamj.v63.17119
Meegoda, J. N., Li, B., Patel, K., & Wang, L. B. (2018). A review of the processes, parameters, and optimization of anaerobic digestion. International journal of environmental research and public health, 15(10), 2224. https://doi.org/10.3390/ijerph15102224
Mengqi, Z., Shi, A., Ajmal, M., Ye, L., & Awais, M. (2023). Comprehensive review on agricultural waste utilization and high-temperature fermentation and composting. Biomass Conversion and Biorefinery, 13, 5445-5468. https://doi.org/10.1007/s13399-021-01438-5
Neugebauer, M. (2018). Kitchen and garden waste as a source of heat for greenhouses. Agricultural Engineering, 22(1), 83-93. https://doi.org/10.1515/agriceng-2018-0008.
Obidziński, S., Joka Yildiz, M., Dąbrowski, S., Jasiński, J., & Czekała, W. (2022). Application of Post-Flotation Dairy Sludge in the Production of Wood Pellets: Pelletization and Combustion Analysis. Energies, 15, 9427. https://doi.org/10.3390/en15249427
Pergola, M., Persiani, A., Palese, A. M., Di Meo, V., Pastore, V., D’Adamo, C., & Celano, G. (2018). Composting: The way for a sustainable agriculture. Applied Soil Ecology, 123, 744-750. https://doi.org/10.1016/j.apsoil.2017.10.016.
Qi, H., Zhao, Y., Zhao, X., Yang, T., Dang, Q., Wu, J., Lv, P., Wang, H., & Wei, Z. (2020). Effect of manganese dioxide on the formation of humin during different agricultural organic wastes compostable environments: It is meaningful carbon sequestration. Bioresource technology, 299, 122596. https://doi.org/10.1016/j.biortech.2019.122596.
Shan, G., Li, W., Gao, Y., Tan, W., & Xi, B. (2021). Additives for reducing nitrogen loss during composting: A review. Journal of Cleaner Production, 307, 127308. https://doi.org/10.1016/j.jclepro.2021.127308
Shapovalov, Y., Zhadan, S., Bochmann, G., Salyuk, A., & Nykyforov, V. (2020). Dry anaerobic digestion of chicken manure: A review. Applied Sciences, 10(21), 7825. https://doi.org/10.3390/app10217825
Shi, M., Zhao, Y., Zhu, L., Song, X., Tang, Y., Qi, H., Cao, H., & Wei, Z. (2020). Denitrification during composting: Biochemistry, implication and perspective. International biodeterioration & biodegradation, 153, 105043. https://doi.org/10.1016/j.ibiod.2020.105043.
Sikorska, W., Musioł, M., Rydz, J., Kowalczuk, M., & Adamus, G. (2019). Kompostowanie przemysłowe jako metoda zagospodarowania odpadów z materiałów poliestrowych otrzymywanych z surowców odnawialnych. Polimery, 64(11-12), 818-827. https://doi.org/10.14314/polimery.2019.11.11dx.doi.org/10.14314/polimery.2019.11.11.
Smith, M. M., & Aber, J. D. (2018). Energy recovery from commercial-scale composting as a novel waste management strategy. Applied energy, 211, 194-199. https://doi.org/10.1016/j.apenergy.2017.11.006.
Sołowiej, P., Pochwatka, P., Wawrzyniak, A., Łapiński, K., Lewicki, A., & Dach, J. (2021). The Effect of Heat Removal during Thermophilic Phase on Energetic Aspects of Biowaste Composting Process. Energies, 2021, 14, 1183. https://doi.org/10.3390/en14041183
Szala, B., & Paluszak, Z. (2008). Wpływ procesu kompostowania bioodpadów w kontenerowej technologii Kneer na inaktywację jaj glist Ascaris suum. Medycyna Weterynaryjna, 64(3), 361-36.
Thirunavukkarasu, A., Nithya, R., Kumar, S. M., Priyadharshini, V., Kumar, B. P., Premnath, P., Sivashankar, R., & Sathya, A. B. (2022). A business canvas model on vermicomposting process: key insights onto technological and economical aspects. Bioresource Technology Reports, 18, 101119. https://doi.org/10.1016/j.biteb.2022.101119.
Uddin, M. N., Siddiki, S. Y. A., Mofijur, M., Djavanroodi, F., Hazrat, M. A., Show, P. L., Ahmed, S. F., Chu, Y. M. (2021). Prospects of bioenergy production from organic waste using anaerobic digestion technology: a mini review. Frontiers in Energy Research, 9, 627093. https://doi.org/10.3389/fenrg.2021.627093
Valverde-Orozco, V., Gavilanes-Terán, I., Idrovo-Novillo, J., Carrera-Beltrán, L., Basantes-Cascante, C., Bustamante, M. A., & Paredes, C. (2023). Agronomic, Economic and Environmental Comparative of Different Aeration Systems for On-Farm Composting. Agronomy, 13(3), 929, https://doi.org/10.3390/agronomy13030929
Vikram, N., Sagar, A., Gangwar, C., Husain, R., & Kewat, R. N. (2022). Properties of humic acid substances and their effect in soil quality and plant health. In A. Makan (Eds.), Humus and humic substances-recent advances. London, UK: IntechOpen. https://doi.org/10.5772/intechopen.105803
Vuković, A., Velki, M., Ečimović, S., Vuković, R., Štolfa Čamagajevac, I., & Lončarić, Z. (2021). Vermicomposting-Facts, benefits and knowledge gaps. Agronomy, 11(10), 1952. https://doi.org/10.3390/agronomy11101952.
Waliszewska, H., Zborowska, M., Stachowiak-Wencek, A., Waliszewska, B., & Czekała, W. (2019). Lignin Transformation of One-Year-Old Plants During Anaerobic Digestion (AD). Polymers, 11(5), 1-10. https://doi.org/10.3390/polym11050835
Weiland, P. (2010). Biogas production: current state and perspectives. Applied microbiology and bio-technology, 85, 849-860. https://doi.org/10.1007/s00253-009-2246-7
Yatoo, A. M., Ali, M. N., Baba, Z. A., & Hassan, B. (2021). Sustainable management of diseases and pests in crops by vermicompost and vermicompost tea. A review. Agronomy for Sustainable Development, 41, 1-26. https://doi.org/10.1007/s13593-020-00657-w
Zhang, T., Wu, X., Shaheen, S. M., Abdelrahman, H., Ali, E. F., Bolan, N. S., Ok, Y. S., Li, G., Tsang, D. C. W., & Rinklebe, J. (2022a). Improving the humification and phosphorus flow during swine manure composting: a trial for enhancing the beneficial applications of hazardous biowastes. Journal of hazardous materials, 425, 127906. https://doi.org/10.1016/j.jhazmat.2021.127906
Zhang, Y., Chen, M., Guo, J., Liu, N., Yi, W., Yuan, Z., & Zeng, L. (2022)b. Study on dynamic changes of microbial community and lignocellulose transformation mechanism during green waste composting. Engineering in Life Sciences, 22(5), 376-390. https://doi.org/10.1002/elsc.202100102
Zhao, X., Tan, W., Peng, J., Dang, Q., Zhang, H., & Xi, B. (2020). Biowaste-source-dependent synthetic pathways of redox functional groups within humic acids favoring pentachlorophenol dechlorination in composting process. Environment international, 135, 105380. https://doi.org/10.1016/j.envint.2019.105380.
Zhong, X. Z., Li, X. X., Zeng, Y., Wang, S. P., Sun, Z. Y., & Tang, Y. Q. (2020). Dynamic change of bacterial community during dairy manure composting process revealed by high-throughput sequencing and advanced bioinformatics tools. Bioresource technology, 306, 123091. https://doi.org/10.1016/j.biortech.2020.123091
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Wojciech Czekała et al., published by Sciendo
This work is licensed under a Creative Commons Attribution 4.0 International License.