Electrotechnical Tools and Computer Image Analysis in Assessing the Quality of Maize Grain During Storage
DOI:
https://doi.org/10.2478/agriceng-2023-0016Keywords:
quality analysis, grain warehouse, computer image analysis, electrical engineeringAbstract
The study of qualitative characteristics is becoming increasingly important due to determination of the purchase price and further use of seeds. An important problem of the modern sustainable agriculture is the production of seeds and products with appropriate quality parameters. The research carried out so far proves that the technology of harvesting, transport, and drying conditions as well as storage have an impact on the quality of seeds, determining their usefulness for the industry. The smallest irregularities can cause irreversible changes and significantly reduce the technological value of seeds and their processing products. The use of tools in the field of supporting electrical engineering enables detection and highlighting of image elements so that it becomes readable to the human eye. The aim of the research was to develop technology for evaluating grain in storage using electrotechnical tools and computer techniques.
References
Abdullah, M. Z., Guan, L. C., Lim, K. C., & Karim, A. A. (2004). The applications of computer vision system and tomographic radar imaging for assessing physical properties of food. Journal of food engineering, 61(1), 125-135.
Alexandratos, N. & Bruinsma, J. (2012). World Agriculture towards 2030/2050: the 2012 Revision. ESA Working Paper Rome. FAO.
Białobrzewski, I. (2005). Wykorzystanie sieci neuronowej do estymacji wartości wilgotności względnej powietrza na podstawie wartości jego temperatury. Inżynieria Rolnicza, 1(61), 15-22.
Białobrzewski, I., Markowski, M. & Bowszys, J. (2005). Symulacyjny model zmian pola temperatury w silosie zbożowym. Inżynieria Rolnicza, 8(60), 23-30.
Broda, M., Grajek, W. (2009). Mikroflora ziaren zbóż i metody redukcji skażenia mikrobiologicznego. Zeszyty Problemowe Postępów Nauk Rolniczych, 2, 19–30.
Chai, T. (2016). Industrial process control systems: research ststus and development direction. Scientia Sincia Informations, 46(8), 1003-1015.
Du, C. J. & Sun, D.-W. (2005). Correlating shrinkage with yield, water content and texture of pork ham by computer vision. Journal of Food Process Engineering, 28, 219-232.
Dworczak, M. & Szlasa, R. (2001). Wpływ innowacji na wzrost konkurencyjności przedsiębiorstw. Zarzadzanie innowacjami. Warszawa, PL: Oficyna Wydawnicza Politechniki Warszawskiej.
Godfray, H. C. J., & Garnett, T. (2014). Food security and sustainable intensification. Philosophical transactions of the Royal Society B: biological sciences, 369(1639), 20120273.
Gonzales-Barron, U., & Butler, F. (2006). Statistical and spectral texture analysis methods for discrimination of bread crumb images. In 13th World Congress of Food Science & Technology 2006 (pp. 164-164).
Iqbal, A., Valous, N. A., Mendoza, F., Sun, D.-W. & Allen, P. (2010). Classification of pre-sliced pork and Turkey ham qualities based on image color and textural features and their relationships with consumer responses. Meat Science, 84, 455-465.
Kręcidło, Ł., & Krzyśko-Łupicka, T. (2015). Sensitivity of molds isolated from warehouses of food production facility on selected essential oils. Ecological Engineering & Environmental Technology, 43, 100-108.
Li, J., Liao, G., Ou, Z., & Jin, J. (2007, December). Rapeseed seeds classification by machine vision. In Workshop on Intelligent Information Technology Application (IITA 2007), pp. 222-226.
Liu, Z. Y., Cheng, F., Ying, Y. B., & Rao, X. Q. (2005). Identification of rice seed varieties using neural network. Journal of Zhejiang University-Science B, 6(11), 1095-1100.
Majumdar, S., Jayas, D, S. & Symons, S. J. (1999). Textural features for grain identification. Agricultural Engineering Journal, 8(4), 213-222.
Manickavasagab, A., Sathya, G., Jayas, D.S. & White, N.D.G. (2008). Wheat class identification using monochrome images. Journal of Cereak Science, 47, 518-527.
Mladenov, M., & Dejanov, M. (2004, June). Analysis of the possibilities for separator color and texture features. In Proceedings of the International Conference on Computer Systems and Technologies, Rousse, Bulgaria, pp. 17-18.
Mohan, A. L., Jayas, D. S., White, N. D. G., & Karunakaran, C. (2004). Classification of bulk oilseeds, specialty seeds and pulses using their reflectance characteristics. In Proceedings of the International Quality Grain Conference, Indiana, USA, pp. 19-22.
Qian, F., Zhong, W. & Du, W. (2017). Fundamental theories and key technologies for smart and optimal manufacturing in the process industry. Elsevier Engineering, 3(2), 154-160.
Sànchez, A. J., Albarracin, W., Grau, R., Ricolfe, C. & Barat J. M. (2008). Control of ham salting by using image segmentation. Food Control, 19, 135-142.
Szwedziak, K. (2019b). The use of vision techniques for the evaluation of selected quality parameters of maize grain during storage. E3S Web of Conference, 132, 01028.
Szwedziak, K. (2019a). Artifical neutral networks and computer image analysis of selected quality parameters of pea seeds. E3S Web of Conference, 132, 01027.
Tukiendorf, M. (2005). Zastosowanie sieci FBM w neuronowym modelowaniu mieszania dwuskładnikowych układów ziarnistych. Inżynieria Rolnicza, 9(14), 367-373.
Tukiendorf, M., Szwedziak, K., & Sobkowicz, J. (2006). Określenie czystości ziarna konsumpcyjnego za pomocą komputerowej analizy obrazu. Inżynieria Rolnicza, 10, 519-525.
Visen, N.S. Paliwal, J., Jayas, D.S. & White, N.D.G. (2004). Image analysis of bulk grain samples using neural networks. Canadian Biosystems Engineering, 46, 11-15.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Katarzyna Szwedziak et al., published by Sciendo
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Most read articles by the same author(s)
- Vasul Salo, Valerii Pastukhov, Serhii Leshchenko, Taras Shchur, Oleg Dzhidzhora, Katarzyna Szwedziak, Stanisław Parafiniuk, Differentiation of the Composition of Combined Soil-Tillage Machines depending on the Conditions of Use , Agricultural Engineering : Vol. 28 (2024)