Design and Efficiency of a String Hulling Machine for Buckwheat
DOI:
https://doi.org/10.2478/agriceng-2024-0009Keywords:
food process engineering, buckwheat hulling, string hulling device, impact hulling, effectiveness of buckwheat hulling, hulling ratioAbstract
An important task of food engineering, namely grain processing and the pro-duction of cereals and fodder, is the improvement of hulling equipment and the creation of complex technological lines for the processing of the original crops is gaining particular relevance. The reason for this is the need to carry out several preparatory stages, and, as a result, the use of additional equipment. To solve this problem, a string hulling device had been developed, the use of which allows reducing the number of operations due to the exclusion of preliminary sorting into fractions and wet-heat treatment. These operations are required by other hulling machines included in the technological lines of buckwheat processing. The structural scheme of the string hulling device had been developed and the principle of the shell removal operation had been substantiated. Theoretical studies had been carried out by the methods of analysis and synthesis of the mechanics of destruction and systematic analysis of the process of buckwheat hulling by impact. Experimental studies had been carried out using a laboratory string hulling device. The conducted analytical studies made it possible to determine the regularity between the physical and mechanical characteristics of buckwheat and the critical linear impact speed necessary for the destruction of the shell. This allows deter-mining the frequency of rotation of the string at which the destruction of the shell will occur while preserving the integrity of the core. Experimental studies made it possible to determine the quality of buckwheat hulling by determining the coefficient of integrity of the kernel and the coefficient of hulling. It has been determined that the ranges of the rotation frequency of the strings required to ensure a high degree of the buckwheat hulling technological process efficiency are within 15.8-16.9 s−1.
References
Alamooti, M.Y.; Mahmoodi, E. (2015). Evaluation of a new multipurpose centrifugal mechanism for nut process. Innovative Food Science and Emerging Technologies, 32, 186-192. DOI:10.1016/j.ifset.2015.09.002.
Anosike, N.; Brown, E.; Maduka, C. (2016). Performance Evaluation of a Prototyped Breadfruit Seed Dehulling Machine. Machines, 4, 11. DOI: 10.3390/machines4020011.
Borysov, V.; Hevko, I.; Torubara, O.; Borysova, S.; Milko, D.; Zhuravel, D.; Tsymbal, B.; Bratishko, V.; Samoichuk, K.; Postol, Y. (2020). Revealing new patterns in resource-saving processing of chromium-containing ore raw materials by solidphase reduction. Eastern-European Journal of Enterprise Technologies, 1/12 (103), 24-29. DOI: 10.15587/1729-4061.2020.196653.
Brasalyn, S.N. (1983) Sovershenstvovanye tekhnolohyy vydelenyia yadra s tseliu vyrabotky hrechnevoi krupy uluchshennoho kachestva. Ph.D. dissertation/thesis, Moscaw, USSR.
Bulgakov, V.; Olt, J.; Kuvachov, V. (2019a). Theoretical study on power performance of agricultural gantry systems. In proceedings of the 30th International DAAAM Symposium “Intelligent Manufacturing & Automation”, 23 – 26 October 2019 (pp. 0167-0175) Vienna, Austria. DOI:10.2507/30th.daaam.proceedings.022
Bulgakov, V.; Pascuzzi, S.; Adamchuk, V.; Kuvachov, V.; Nozdrovicky, L. (2019b). Theoretical study of transverse offsets of wide span tractor working implements and their influence on damage to row crops. Agriculture, 9, 144. DOI:10.3390/agriculture9070144.
Chernysh, V.I. (2016). Fizyko-mekhanichni ta tekhnolohichni vlastyvosti zerna hrechky – osnova pidvyshchennia efektyvnosti yii pisliazbyralnoi obrobky. Zbirnyk naukovykh prats molodykh uchenykh, aspirantiv ta studentiv, 83-85.
Deynichenko, G.; Samoichuk, K.; Yudina, T.; Levchenko, L.; Palianychka, N.; Verkholantseva, V.; Dmytrevskyi, D.; Chervonyi, V. (2014). Parameter optimization of milk pulsation homogenizer. Journal of Hygienic Engineering and Design 2018, 24, 63-67.
Dmitriev, A.; Ziganshin, B.; Khaliullin, D.; Aleshkin, A. (2020). Study of efficiency of peeling machine with variable deck. Engineering for rural development, 1053-1058. DOI:10.22616/ERDev. 2020.19.TF249.
Eremenok, I.V. (2001). Udoskonalennia lushchylnoi mashyny vidtsentrovoi dii. Ph.D. dissertation/thesis, Kiyv, Ukraine.
Faichuk, O.; Voliak, L.; Hutsol, T.; Glowacki, S.; Pantsyr, Y.; Slobodian, S.; Szeląg-Sikora, A.; Gródek-Szostak, Z. (2022). European Green Deal: Threats Assessment for Agri-Food Exporting Countries to the EU. Sustainability, 14, 3712. DOI: 10.3390/su14073712.
Food-processing Machinery including techniques. (1991) UN Economic Grimmission for Europe. New York, UN, USA.
Haponiuk, O. I.; Soldatenko, L. S.; Hrosul, L. H. (2018). Tekhnolohichne obladnannia boroshnomelnykh i krupianykh pidpryiemstv Kherson, Ukraine: Oldi+.
Hrosul, L. (1999) Agregatnoe oborudovanye dlia pererabotki zerna. Tekhnika APK, 1, 42-43.
Ikubanni, P.P.; Komolafe, O.O.; Agboola, O.O.; Osueke, C.O. (2017). Moringa seed dehulling machine: a new conceptual design. Journal of Production Engineering, 20 (2), 73-78. DOI: 10.24867/JPE-2017-02-073.
International Organization for Standardization (2003). Zernovi, bobovi ta produkty yikh pomelu. Vidbir prob. 13690:2003. Kyiv, Ukraine.
Ivanovs, S.; Bulgakov, V.; Kaletnik, H.; Shymko, L.; Kuvachov, V.; Ihnatiev, Y. (2020). Experimental checking of mathematical models describing the functioning adequacy of bridge systems in agricultural track system. INMATEH-Agricultural Engineering, 62 (3), 107-114. DOI:10.35633/10.35633/INMATEH-62-11.
Kovalenko, N.; Kovalenko, V.; Hutsol, T.; Ievstafiieva, Y.; Polishchuk, A. (2021). Economic Efficiency and Internal Competitive Advantages of Grain Production in The Central Region of Ukraine. Agric. Eng., 25, 51-62. DOI: 10.2478/agriceng-2021-0004.
Kovalov, M. O.; Donets, A.O. (2017). Vplyv lushchennia zerna na kilkisno–iakisni pokaznyky laboratornoho pomelu. Tekhnolohii kharchovykh produktiv i kombikormiv: zb. tez dop. Mizhnar. nauk.- prakt. Konf 25–30 veres. 2017 (pp. 12-13). Odesa, Ukraine.
Kudriavtsev, A.N.; Vatutyn, V.A. (1991). Patent 1685514 USSR, №4761144/13; 1991, 39, 2.
Kuzmychev, V.E. (1989) Zakony y formuly fyzyky. Kiev, Ukraine: Naukova dumka.
Lazaro, E. L.; Benjamin, Y.; Mpanduji, S.M. (2014). Development of a Low Cost Machine for Improved Sorghum Dehulling Efficiency. Tanzania Journal of Agricultural Sciences 12(2), 47-54.
Lü, S.; Du, W.; Chen, Z.; Chen, W.; Surigalatu. (2019). On-line Measuring Method of Buckwheat Hulling Efficiency Parameters Based on Machine Vision. Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 50(10), 35-43. DOI:10.6041/j.issn.1000-1298.2019.10.004.
Malanychev, Y.V. (2000). Obosnovanye parametrov pnevmomekhanycheskoho shelushytelia zerna hrechykhy na osnove modelyrovanyia tekhnolohycheskoho protsessa, Ph.D. dissertation/thesis, Kazan, Rossia.
Malkina, V.; Kiurchev, S.; Hutsol, T.; Verkholantseva,V.; Kiurcheva, L.; Miroshnichenko, M.; Biliuk, M.; Pidlisnyj,V.; Gürgülü, H; Kowalczyk, Z. (2022). Optimization of Parameters of a Vibroconveyor System for Infrared Drying of Soy. Agricultural Engineering 2022, 26(1), 157-166. DOI:10.2478/agriceng-2022-0013.
Merko, I. T. (2010). Tekhnolohii mukomelnoho i krup‘ianoho vyrobnytstva. Odesa, Ukraine: Druk. Dim
Mudasir, A. M.; Charanjiv, S. S. (2016). Engineering properties of sunflower seed: Effect of dehulling and moisture content. Cogent Food & Agriculture, 2:1, DOI:10.1080/23311932.2016.1145783
Nwaigbo, S.C.; Chinwuko, E.C.; Achebe, C.H.; Tagbo, D.A. (2008). Design of breadfruit shelling machine. African research review, 2 (4), 1-16. DOI:10.4314/afrrev.v2i4.41079
Osypov, Ya.D. (2012). Valtsedekovaia mashyna s kolebatelno-vrashchatelnym elektropryvodom povyshennoi effektyvnosty shelushenyia zerna. Ph.D. dissertation/thesis, Yzhevsk., Russia.
Panasiuk, V. (1988) Mekhanyka razrushenyia y prochnosty materyalov. Kiev, SSSR: Naukova dumka
Parton, V.Z.; Boriskovskij, V.G. (1985). Dinamicheskaya mekhanika razrusheniya. Moscow, USSR: Mashinostroenie
Parton, V.Z.; Boryskovskij, V.G. (1988). Dinamika hrupkogo razrusheniya. Moskva, SSSR: Mashinostroenie
Pascuzzi, S.; Santoro, F. (2017). Analysis of the almond harvesting and hulling mechanization process: A case study. Agriculture (Switzerland), 7(12), 100. DOI:10.3390/agriculture7120100.
Radchenko, S. H. (1998) Matematychne modeliuvannia tekhnolohichnykh protsesiv u mashynobuduvanni. Kiev, Ukraine: ZAT «Ukrspetsmontazhproekt».
Rozhnovskyi M.F. (2000) Opredelenye mekhanyzma deformatsyy y razrushenyia zernovykh materyalov. Visnyk ahrarnoi nauky, 9. Kyiv, Ukraine, 50-53.
RTM 8.55.00.112-88. Mashinyi shelushilnie. Programma i metodika ispitaniya. (1988). Myrhorodskaia MYS, USSR, p. 20.
Samoichuk, K.; Kovalyov, A.; Fuchadzhy, N.; Hutsol, T.; Jurczyk, M.; Pająk, T.; Banaś, M.; Bezaltychna, O.; Shevtsova, A. (2023). Energy costs reduction for dispersion using a jet-slot type milk homogenizer. Energies, 16, 2211. DOI:10.3390/en16052211.
Samoichuk, K., Zhuravel, D., Viunyk, O., Milko, D., Bondar, A.; Sukhenko, Y.; Sukhenko, V.; Adamchuk, L.; Denisenko, S. (2020). Research on milk homogenization in the stream homogenizer with separate cream feeding. Potravinarstvo Slovak, Journal of Food Sciences, 14, 142-148. DOI:10.5219/1289.
Samoilov, V.A., Yarum, A.Y., Nevzorov, V.N.; Salykhov, D.V. (2017). Novoe oborudovanye dlia pererabotky zernovykh kultur v pyshchevye produkty. Krasnoiarsk, Rossia: KGAU.
Siqin, D.; Wenliang, Du. (2013) Effect of shelling gap on whole half kernel rate of Buckwheat. Food and Machinery, 03, 191-193.
Solanki, Ch.; Mridula, D.; Aleksha Kudos, S.K.; Gupta, R.K. (2018). Buckwheat dehuller and optimization of dehulling parameters. International Journal of Current Microbiology and Applied Sciences, 7(11), 1041-1052. DOI:10.20546/ijcmas.2018.711.120.
Solomka, O.V.; Kovbasa, V.P. (2009) Analіz protsesu podrіbnennya zernovikh materіalіv. Vіsnik Kharkіvskogo natsіonalnogo tekhnіchnogo unіversitetu sіlskogo gospodarstva іmenі Petra Vasilenka: Vdoskonalennya tekhnologіy ta obladnannya virobnitstva produktsіi tvarinnitstvaБ 78, 132-140.
Solomka, V.; Solomka, A. (2014). Failure analysis of grain blow. MOTROL. Commission of Motorization and Energetics in Agriculture, 16(3), 172-178.
Vishwakarma, R. K.; Shivhare, U. S.; Gupta, R. K.; Yadav, D. N.; Jaiswal, A.; Prasad, P. (2018) Status of pulse milling processes and technologies. Critical Reviews in Food Science and Nutrition, 58:10, 1615-1628. DOI: 10.1080/10408398.2016.1274956.
Vishwakarma, R. K.; Shivhare, U. S.; Nanda, S. K. (2016). Novel method and machine for dehulling of guar seeds and optimisation of dehulling process. Food and Bioproducts Processing, 99, 51-57. DOI:10.1016/j.fbp.2016.04.001.
Voloshenko, O.; Khorenzhyi, N. V.; Dietkova, K. S. (2019). Doslidzhennia yakosti hrechanykh krup, predstavlenykh u rozdribnomu prodazhu m. Odesy. Zb. tez dop. 79-yi nauk. konf. vykl. akad 2019 (pp. 18-20). Odesa, Ukraine.
Xu, B.; Zhang, Y.; Cui, Q.; Ye, S.; Zhao, F. (2021). Construction of a discrete element model of buck- wheat seeds and calibration of parameters INMATEH. Agricultural Engineering, 64, 175-184. DOI: 10.35633/inmateh-64-17.
Yalpachyk, F. Iu.; Fuchadzhy, N. O.; Hvozdiev, O.V. Prystrii dlia lushchennia zerna. Patent 3304. Ukraine, 2004, 11, 3.
Yalpachyk, F.Iu.; Fuchadzhy, N.O. (2004). Lushchylnyi prystrii udarnoi dii. Tekhnika APK 12, 27-28 Yalpachyk, V.F.; Zahorko,N.P.; Skliar, O.H.; Kiurchev, S.V.; Budenko, S.F.; Verkholantseva, V.O.;
Kiurcheva, L.M.; Tsyb, V.H. (2018) Obladnannia skladiv. Zberihannia zerna i zernoproduktiv. Melitopol, Ukraine: Vydavnychyi budynok Melitopolskoi miskoi drukarni.
Yarum, A.I. (2014). Improving the technological parameters of buckwheat grain hulling, Ph.D. dissertation/thesis, Krasnyarsk, Russia.
Zaitsev, V.P. (1974). Issledovanye rezhimov shelusheniya zerna prosa i iznosa elastychnih rabochih organov (dek) valtsedekovih stankov, Ph.D. dissertation/thesis, Moscaw, Russia.
Zhen, J.; Chen, W.; Gao, H. (2022). Study on hulling characteristics of buckwheat huller. INMATEH – Agricultural Engineering, 66(1), 239-246. DOI: 10.35633/inmateh-66-24.
Zhuravel, D.; Samoichuk, K.; Petrychenko, S.; Bondar, A. (2020). Modeling of Diesel Engine Fuel Systems Reliability When Operating on Biofuels. Energies, 15(5), 1795. DOI:10.3390/en15051795.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Kyrylo Samoichuk et al., published by Sciendo
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Most read articles by the same author(s)
- Yevhen Mykhailov, Natalia Zadosna, Yevhen Ihnatiev, Anastasiia Kutsenko, Taras Hutsol, Katarzyna Grotkiewicz , Yuriy Firman, Iryna Horetska, Practical Potential of Grain Impurities in the Processing of Sunflower Oil Raw Materials in the Oil and Fat Industry , Agricultural Engineering : Vol. 26 (2022)
- Savelii Kukharets, Taras Hutsol, Szymon Glowacki, Anna Rozkosz, Oleg Tkach, Concept of Biohydrogen Production by Agricultural Enterprises , Agricultural Engineering : Vol. 25 (2021)
- Nataliia Kovalenko, Vitalii Kovalenko, Taras Hutsol, Yulia Ievstafiieva, Anastasiia Polishchuk, Economic Efficiency and Internal Competitive Advantages of Grain Production in the Central Region of Ukraine , Agricultural Engineering : Vol. 25 (2021)
- Nataliia Kovalenko, Taras Hutsol, Vitalii Kovalenko, Szymon Glowacki, Sergii Kokovikhin, Oleksander Mudragel, Maciej Kuboń, Wioletta Tomaszewska-Górecka, Hydrogen Production Analysis: Prospects for Ukraine , Agricultural Engineering : Vol. 25 (2021)
- Aleksander Cherenkov, Taras Hutsol, Igor Garasymchuk, Jurii Pancyr, Dmytro Terenov, Vitalii Dubyna, Analysis of Broadband Antenna Radiation Pulses , Agricultural Engineering : Vol. 22 No. 1 (2018)
- Taras Hutsol, Jurii Firman, Sergiy Komarnitsky, Modelling of the Separation Process of the Potato Stack , Agricultural Engineering : Vol. 21 No. 4 (2017)
- Vira Malkina, Sergey Kiurchev, Taras Hutsol, Valentуna Verkholantseva, Lyidmila Kiurcheva, Mykola Miroshnichenko, Mykola Biliuk, Vitaliy Pidlisnyj, Hatice Gürgülü, Zbigniew Kowalczyk, Optimization of Parameters of a Vibroconveyor System for Infrared Drying of Soy , Agricultural Engineering : Vol. 26 (2022)
- Taras Hutsol, Alexey Kutyrev, Nikolay Kiktev, Mykola Biliuk, Robotic Technologies in Horticulture: Analysis and Implementation Prospects , Agricultural Engineering : Vol. 27 (2023)
- Volodymyr Nadykto, Sergey Kiurchev, Tatiana Chorna, Taras Hutsol, Krzysztof Mudryk, Szymon Głowacki, Anatoliy Rud, Alona Shevtsova, Igor Ryabov, Katarzyna Szwedziak, Experimental Studies on the Operation of Agricultural Crops Mowing Unit with Simultaneous Chopping and Incorporation of Stubble Into the Soil , Agricultural Engineering : Vol. 27 (2023)
- Mariusz Sojak, Szymon Głowacki, Weronika Tulej, Andrzej Bryś, Taras Hutsol, Iryna Horetska, Liliia Stroianovska, Anna Rozkosz, Miroslav Prístavka, The Expert System Supporting Decision-Making in the Process of Vegetable Pests Extermination During Vegetation Period , Agricultural Engineering : Vol. 27 (2023)