AgricEng Logo

Yeast Solution Spray and Ozone Gas Fumigation as Methods of Protecting Tomato Plants Against Diseases

Authors

DOI:

https://doi.org/10.2478/agriceng-2024-0014

Keywords:

tomatoes, gaseous ozone, physiological parameters, saccharomyces cerevisiae

Abstract

The aim of the study was to determine the effect of ozone fumigation and spraying with microorganisms, i.e. yeast, on selected physiological parameters, and the extent of disease infection of tomato plants. Tomato plants were grown in the ground under covers. Throughout the 2021 and 2022 growing season, the plants were exposed to variable factors, i.e. fumigation with gaseous ozone at a dose of 2 ppm for 1 minute and spraying with yeast. After ozonation and spraying with yeast, physiological measurements were made on tomato plants, such as: selected parameters of chlorophyll fluorescence (maximum quantum yield of PSII photochemistry, maximum quantum yield of primary photochemistry) and gas exchange parameters (transpiration rate, stomatal conductivity and intercellular CO2 concentration). In addition, the content of chlorophyll using the SPAD method as well as plant infection by diseases was determined. Compared to the control sample, ozonation resulted in a slight decrease in the physiological parameters of tomato plants. In addition, no visible leaf damage was observed after the ozone gas fumigation process. However, the use of microorganisms did not significantly change the examined physiological parameters. Both after the application of gaseous ozone and microorganisms, a significant impact of the tested variable factors was found on reducing the infection of tomato plants by diseases such as: tomato late blight, tomato alter-nariosis, gray mold, bacterial canker of tomato and bacterial spot of tomato.

References

Afsah-hejri, L., Hajeb, P. & Ehsani, R.J. (2020). Application of ozone for degradation of mycotoxins in food: a review. Comprehensive Reviews in Food Science and Food Safety, 19(4), 1777-1808.

Agathoklfous, E., Saitanis, C.J., Wang, X.N., Watanabe, M. & Koike, T. (2016). A review study on past 40 years of research on effects of tropospheric O3 on belowground structure, functioning, and processes of trees: A linkage with potential ecological implications. Water Air Soil Pollut, 227, 33.

Agathoklfous, E., Saitanis, C.J. & Koike, T. (2015). Tropospheric O3, the nightmare of wild plants: A review study. Journal of Agricultural Meteorology, 71, 142-152.

Akbas, M. and Ozdemir, M. (2006). Effect of different ozone treatments on aflatoxin degradation and physicochemical properties of pistachio. Journal of the Science of Food and Agriculture, 86(13), 2099-2104.

Angelini, G., Ragni, P., Esposito, D., Giardi, P., Pompili, M.L., Moscardelli, R. & Giardi, M.T. (2001). A device to study the effect of space radiation on photosynthesic organizms. Physica Medica, 17, 267-268.

Berg, G., Kusstatscher, P., Abdelfattah, A., Cernava, T. & Smalla, K. (2021). Microbiome modulation-toward a better understanding of plant microbiome response to microbial inoculants. Frontiers in Microbiology, 12, 650610.

Botondi, R., Barone, M. & Grasso, C. (2021). A review into the effectiveness of ozone technology for improving the safety and preserving the quality of fresh-cut fruits and vegetables. Foods, 10(4), 748.

Botondi, R., De Sanctis, F., Moscatelli, N., Vettraino, A.M., Catelli, C. & Mencarelli, F. (2015). Ozone fumigation for safety and quality of wine grapes in postharvest dehydration. Food Chemistry, 188, 641-647.

Bryant, C., Fuenzalida, T.I., Brothers, N., Mencuccini, M., Sack, L., Binks, O. & Ball, M.C. (2021). Shifting access to pools of shoot water sustains gas exchange and increases stem hydraulic safety during seasonal atmospheric drought. Plant, Cell & Environment, 44, 2898-2911.

Bussotti, F., Desotgiu, R., Cascio, Ch., Pollastrini, M., Gravano, E., Gerosa, G., Marzuoli, R., Nali, C., Lorenzini, G., Salvatori, E., Manes, Fausto, S. & Reto, M. (2011). Ozone stress in woody plants assessed with chlorophyll a fluorescence. A critical reassessment of existing data. Environmental and Experimental Botany, 73, 19-30.

Cao, J.L., Zhu, J.G., Zeng, Q. & Li, C.H. (2012). Research advance in the effect of elevated O3 on characteristics of photosynthesis. Journal of Biology, 26, 66-70.

Chandran, H., Meena, M. & Swapnil, P. (2021). Plant growth-promoting rhizobacteria as a green alternative for sustainable agriculture. Sustainability, 13, 10986.

Chen, B., Song, Q. & Pan, Q. (2022). Study on Transpiration Water Consumption and Photosynthetic Characteristics of Landscape Tree Species under Ozone Stress. Atmosphere, 13, 1139.

Chevin, L.-M. & Hoffmann, A.A. (2017). Evolution of phenotypic plasticity in extreme environments. Philosophical Transactions of the Royal Society B, 372, 20160138.

Choudhury, F.K., Rivero, R.M., Blumwald, E. & Mittler, R. (2017). Reactive Oxygen species, abiotic stress and stress combination. The Plant Journal, 90, 856-867.

Di Benedetto, N.A., Corbo, M.R., Campaniello, D., Cataldi, M.P., Bevilacqua, A., Sinigaglia, M. & Flagella, Z. (2017). The role of plant growth promoting bacteria in improving nitrogen use efficiency for sustainable crop production: A focus on wheat. AIMS Microbiology, 3, 413-434.

De Santis, D., Garzoli, S. & Vettraino, A.M. (2021). Effect of gaseous ozone treatment on the aroma and clove rot by fusarium proliferatum during garlic postharvest storage. Heliyon, 7(4), e06634.

FAOSTAT, (2019). Statistical Databases. Food and Agriculture Organization of the United Nations, Statistics Division, Rome, Italy.

Feng, Z.Z., Zeng, H.Q., Wang, X.K., Zheng, Q.W. & Feng, Z.W. (2008). Sensitivity of Metasequoia glyptostroboides to ozone stress. Photosynthetica, 46, 463–465.

Flowers, M.D., Fiscus, E.L., Burkey, K.O., Booker, F.C. & Dubois, J.B. (2007). Photosynthesis, chlorophyll fluorescence, and yield of snap bean (Phaseolus vulgaris) genotypes differing in sensitivity to ozone. Environmental and Experimental Botany, 61, 190-198.

Glick, B.R. & Gamalero, E. (2021). Recent developments in the study of plant microbiomes. Microorganisms, 9, 1533.

Grulke, N.E. & Heath, R.L. (2020). Ozone effects on plants in natural ecosystems. Plant Biology, 22(S1), 12–37.

Guidi, L., Lo Piccolo, E. & Landi, M. (2019). Chlorophyll Fluorescence, Photoinhibition and Abiotic Stress: Does it Make Any Difference the Fact to Be a C3 or C4 Species? Frontiers in Plant Science, 10, 174.

Guo, C.L. & Jiang, J. (2019). Effect of ozone fumigation on membrane permeability of 13 native tree species. Journal of Green Science and Technology, 1, 118-119.

Hoshika, Y., Watanabe, M., Inada, N. & Koike, T. (2012). Ozone-induced stomatal sluggishness develops progressively in siebold’s beech (Fagus crenata). Environmental Pollution, 166, 152–156.

Kalaji, H.M., Schansker, G., Brestic, M., Bussotti, F., Calatayud, A. & Ferroni, L. (2017). Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynthesis Research, 132, 13-66.

Kalaji H.M., Oukarroum A., Alexandrov V., Kouzmanova M., Brestic M., Zivcak M., Samborska I. A., Cetner M. D., Allakhverdiev S. I. & Goltsev V. (2014). Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measure-ments. Plant Physiology and Biochemistry, 81, 16-25.

Kalaji H. M., Schansker G., Ladle R. J., Goltsev V., Bosa K., Allakhverdiev S. I., Brestic M., Bussotti F., Calatayud A., Dąbrowski P., Elsheery N. I., Ferroni L., Guidi L., Hogewoning S. W., Jajoo A., Misra A. N., Nebauer S. G., Pancaldi S., Penella C., Poli D. B., Pollastrini M., Romanowska-Duda Z. B., Rutkowska B., Serôdio J., Suresh K., Szulc W., Tambussi E., Yanniccari M. & Zivcak M. (2014). Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photo-synthesis Research, 122, 121-158.

Khadre, M.A., Yousef, A.E. & Kim, J.-G. (2001). Microbiological aspects of ozone applications in food: a review. Journal of Food Science, 66(9), 1242-1252.

Köhl, J., Kolnaar, R. & Ravensberg, W.J. (2019). Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Frontiers in Plant Science, 10, 845.

Kumar, S.P., Srinivasulu, A. & Raja Babu, K. (2018). Symptomology of major fungal diseases on tomato and its management. Journal of Pharmacognosy and Phytochemistry, 7(6), 1817-1821.

Lesser, V.M., Rawlings, J.O., Spruill, S.E. & Somerville, M.C. (1990). Ozone effects on agricultural crops: statistical methodologies and estimated dose-response relationships. Crop Science, 30, 148-155.

Leesutthiphonchai, W., Vu, AL., Ah-Fong, A.M.V. & Judelson, H.S. (2018). How Does Phytophthora infestans Evade Control Efforts? Modern Insight Into the Late Blight Disease. Phytopathology, 108(8), 916-924.

Li, P., Feng, Z.Z., Shang, B., Yuan, X.Y., Dai, L.L. & Xu, Y.S. (2018). Stomatal characteristics and ozone does-response relationships for six greening tree species. Acta Ecologica Sinica, 38, 2710-2721.

Li, P., Zhou, H., Xu, Y., Shang, B. & Feng, Z.Z. (2019). The effects of elevated ozone on the accumulation and allocation of poplar biomass depend strongly on water and nitrogen availability. Science of the Total Environment, 665, 929-936.

Liang, J., Zeng, Q., Zhu, J.G., Xie, Z.B., Liu, G. & Tang, H.Y. (2010). Review of indexes for evaluating plant response to elevated near-surface ozone concentration. Chinese Journal of Eco-Agriculture, 18, 440-445.

Liu, D.H., Zhao, S.W., Wang, X.Q. & Fan, J.L. (2015). The effect of ozone on the leaf damage symptom and Physiological characteristics of landscape plants. Chinese Ornamental Horticulture Research Progress, 507-512.

Lutz, S., Thuerig, B., Oberhaensli, T., Mayerhofer, J., Fuchs, J.G., Widmer, F., Freimoser, F.M. & Ahrens, C.H. (2020). Harnessing the microbiomes of suppressive composts for plant protection: From metagenomes to beneficial microorganisms and reliable diagnostics. Frontiers in Microbiology, 11, 1810.

Maitra, S., Brestic, M., Bhadra, P., Shankar, T., Praharaj, S., Palai, J.B., Shah, M.M.R., Barek, V., Ondrisik, P., Skalický, M., et al. (2022). Bioinoculants-Natural biological resources for sustainable plant production. Microorganisms, 10, 51.

Makarevitch, I., Waters, A.J., West, P.T., Stitzer, M., Hirsch, C.N., Ross-Ibarra, J. & Springer, N.M. (2015). Transposable elements contribute to activation of maize genes in response to abiotic stress. PLOS Genetics, 11(1), e1004915.

Manousaridis, G., Nerantzaki, A., Paleologos, E., Tsiotsias, A., Savvaidis, I.N. & Kontominas, M. (2005). Effect of ozone on microbial, chemical and sensory attributes of shucked mussels. Food Microbiology, 22, 1, 1-9.

Matyseek, R., Sandermann, H., Wieser, G., Booker, F., Cieslik, S., Musselman, R. & Ernst, D. (2008). The challenge of making ozone risk assessment for forest trees more mechanistic. Environmental Pollution, 156, 567–582.

Menezes-Silva, P.E., Sanglard, L.M., Ávila, R.T., Morais, L.E., Martins, S.C., Nobres, P., Patreze, C.M., Ferreira, M.A., Araújo, W.L. & Fernie, A.R. (2017). Photosynthetic and metabolic acclimation to repeated drought events play key roles in drought tolerance in coffee. Journal of Experimental Botany, 68, 4309-4322.

Mir, S.A., Shah, M.A., Mir, M.M., Sidiq, T., Sunooj, K.V., Siddiqui, M.W., Marszałek, K. & Khaneghah, A.M. (2023). Recent developments for controlling microbial contamination of nuts. Critical Reviews in Food Science and Nutrition, 63(24), 6710-6722.

Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent, R., ... & Williams, M. L. (2015). Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmospheric chemistry and physics, 15(15), 8889-8973.

Mordente, A., Guantario, B., Meucci, E., Silvestrini, A., Lombardi, E., Martorana, G., & Bohm, V. (2011). Lycopene and cardiovascular diseases: An update. Current Medicinal Chemistry, 18, 1146-1163.

Ouf, S.A., Moussa, T.A., Abd-elmegeed, A.M. & Eltahlawy, S.R. (2016). Anti-fungal potential of ozone against some dermatophytes. Brazilian Journal of Microbiology, 47, 3, 697-702.

Paoletti, E. & Grulke, N. E. (2005). Does living in elevated CO2 ameliorate tree response to ozone? A review on stomatal responses. Environ. Pollut. 2005, 137, 483-493. DOI: 10.1016/j.envpol.2005.01.035

Paoletti, E. & Grulke, N.E. (2010). Ozone exposure and stomatal sluggishness in different plant physiognomic classes. Environmental Pollution, 158, 2664-2671.

Paylan, I.C., Erkan, S., Cetinkaya, N., Ergun, M. & Pazarlar, S. (2014). Effects of different treatments on the inactivation of various seedborne viruses in some vegetables. Ozone: Science & Engineering, 36(5), 422-426.

Piacentini, K.C., Savi, G.D. & Scussel, V.M. (2017). The effect of ozone treatment on species of fusarium growth in malting barley (Hordeum vulgare L.) grains. Quality Assurance and Safety of Crops & Foods, 9(4), 383-389.

Pleijel, H,, Broberg, M,C,, Uddling, J. & Mills, G. (2018). Current surface ozone concentrations significantly decrease wheat growth, yield and quality. Science of the Total Environment, 613-614, 687-692.

Pokluda, R,, Ragasová, L., Jurica, M., Kalisz, A., Komorowska, M., Niemiec, M. & Sekara, A. (2021). Effects of growth promoting microorganisms on tomato seedlings growing in different media conditions. PLoS One, 16(11), e0259380.

Poorter, H., Knopf, O., Wright, I.J., Temme, A.A., Hogewoning, S.W., Graf, A., Cernusak, L.A. & Pons, T.L. (2021). A meta-analysis of responses of C3 plants to atmospheric CO2: Dose–response curves for 85 traits ranging from the molecular to the whole-plant level. New Phytologist, 233, 1560-1596.

Rachoń, L., Szumiło, G. & Bobryk-Mamczarz, A. (2018). Podatność na choroby grzybowe wybranych genotypów pszenicy ozimej w zależności od poziomu agrotechniki. Agronomy Science, 73, 29-39.

Radha, B., Sunitha, N. C., Sah, R. P., TP, M. A., Krishna, G. K., Umesh, D. K., ... & Siddique, K. H. (2023). Physiological and molecular implications of multiple abiotic stresses on yield and quality of rice. Frontiers in Plant Science, 13, 996514.

Rahmati, E., Khoshtaghaza, M.H., Banakar, A. & Ebadi, M.T. (2022). Decontamination technologies for medicinal and aromatic plants: a review. Food Science & Nutrition, 10, 3, 784-799.

Sahu, S.K., Liu, S.C., Ding, D. & Xing, Y. (2021). Ozone pollution in China: Background and trans-boundary contributions to ozone concentration & related health effects across the country. Science of The Total Environment, 761, 144131.

Samarah, N., Sulaiman, A., Salem, N.M. & Turina M. (2021). Disinfection treatments eliminated Tomato brown rugose fruit virus in tomato seeds. European Journal of Plant Pathology, 159, 153-162.

Sarooei, S.J., Abbasi, A., Shaghaghian, S. & Berizi, E. (2019). Effect of ozone as a disinfectant on microbial load and chemical quality of raw wheat germ. Ozone: Science & Engineering, 41(6), 562-570.

Savi, G. D., Gomes, T., Canever, S. B., Feltrin, A. C., Piacentini, K. C., Scussel, R., ... & Angioletto, E. (2020). Application of ozone on rice storage: A mathematical modeling of the ozone spread, effects in the decontamination of filamentous fungi and quality attributes. Journal of Stored Products Research, 87, 101605.

Sharoni, Y., Linnewiel-Hermione, K., Khanin, M., Salman, H., Veprik, A., Danilenko, M. & Levy, J. (2016). Carotenoids and apocarotenoids in cellular signaling related to cancer: A review. Molecular Nutrition & Food Research, 56, 259-269.

Stommel, J. R., Dumm, J. M., & Hammond, J. (2021). Effect of ozone on inactivation of purified pepper mild mottle virus and contaminated pepper seed. PhytoFrontiers™, 1(2), 85-93.

Szpunar-Krok, E., Jańczak-Pieniążek, M., Migut, D., Skrobacz, K., Piechowiak, T., Pawlak, R. & Balawejder, M. (2020). Physiological and Biochemical Properties of Potato (Solanum tuberosum L.) in Response to Ozone-Induced Oxidative Stress. Agronomy, 10, 1745.

Tzortzakis, N., Singleton, I., & Barnes, J. (2008). Impact of low-level atmospheric ozone-enrichment on black spot and anthracnose rot of tomato fruit. Postharvest Biology and Technology, 47(1), 1-9.

Uddling, J., Broberg, M. C., Feng, Z., & Pleijel, H. (2018). Crop quality under rising atmospheric CO2. Current Opinion in Plant Biology, 45, 262-267.

Vallone, L. & Stella, S. (2014). Evaluation of antifungal effect of gaseous ozone in a meat processing plant. Italian Journal of Food Safety, 3(2), 1680.

Wang, X., Agathokleous, E., Qu, L., Watanabe, M., & Koike, T. (2016). Effects of CO2 and O3 on the interaction between root of woody plants and ectomycorrhizae. Journal of Agricultural Meteorology, 72(2), 95-105.

Wang, X., Fujita, S., Nakaji, T., Watanabe, M., Satoh, F., & Koike, T. (2016). Fine root turnover of Japanese white birch (Betula platyphylla var. japonica) grown under elevated CO2 in northern Japan. Trees, 30, 363-374.

Wang, Y., Zhang, Y., Hao, J., & Luo, M. (2011). Seasonal and spatial variability of surface ozone over China: contributions from background and domestic pollution. Atmospheric Chemistry and Physics, 11(7), 3511-3525.

Wu, Q., Zhang, Y., Xie, M., Zhao, Z., Yang, L., Liu, J. & Hou, D. (2023). Estimation of Fv/Fm in Spring Wheat Using UAV-Based Multispectral and RGB Imagery with Multiple Machine Learning Methods. Agronomy, 13, 1003.

Xu, Y., Feng, Z., Shang, B., Dai, L., Uddling, J., & Tarvainen, L. (2019). Mesophyll conductance limitation of photosynthesis in poplar under elevated ozone. Science of the Total Environment, 657, 136-145.

Xu, S., Wang, J., Guo, Z., He, Z., & Shi, S. (2020). Genomic convergence in the adaptation to extreme environments. Plant communications, 1(6), 100117.

Yuen, J. (2021). Pathogens which threaten food security: Phytophthora infestans, the potato late blight pathogen. Food Security, 13(2), 247-253.

Zargaran, M., Fatahinia, M., & Mahmoudabadi, A.Z. (2017). The efficacy of gaseous ozone against different forms of Candida albicans. Current medical mycology, 3(2), 26.

Downloads

Published

2024-12-28

Issue

Section

Articles

How to Cite

Yeast Solution Spray and Ozone Gas Fumigation as Methods of Protecting Tomato Plants Against Diseases. (2024). Agricultural Engineering , 28, 215-233. https://doi.org/10.2478/agriceng-2024-0014