Structure of a Flax Threshing Mass Device
Keywords:
flax harvesting, flax threshing machine, separator, flax seedsAbstract
The object of the research consisted of a roller threshing unit with a profile elastic working surface of a parabolic type and a triangle one with rollers which turn concurrently with various angular speeds. Two rollers with 150 and 300 mm were investigated. The process of seeds separation from the threshing mass took place at its moisture of 10 to 35%. The relation of mixtures in the straw mass in a mass relation was changing within 10 to 35% with the length of stalks from 20 to 400 mm. The amount of the material provided for threshing was varied from 0.27 to 0.52 kg∙s-1∙m-1 and the slot between the rollers from 1.0 to 6.0 mm. The width of the base of notches located on the working surface of drums was within 25 to 150 mm, the height of notches on rollers was within 10 to 60 mm. Kinematic conditions of rollers operation were within 1.0 to 1.5. As a result of the research it was determined that a parabola is the optimal form of the profiled surface of rollers in a cross section. It ensures more effective seeds separation than a triangle configuration of drums. This conclusion is also confirmed by a theoretical discussion and is explained with the fact that the parabolic form of notches has a bigger surface than the triangle one and that they affect more seed-bags which leads to the increase of the seeds separation degree. The laboratory research allowed determination of rational ranges of parameters changes during flax mass threshing.Downloads
Published
2017-02-09
Issue
Section
Articles
How to Cite
Structure of a Flax Threshing Mass Device. (2017). Agricultural Engineering , 21(1), 47-57. https://ojs.agriceng.org/index.php/AgricEng/article/view/15
Most read articles by the same author(s)
- Maciej Kuboń, Level and Structure of Inputs in Specialist Farms , Agricultural Engineering : Vol. 22 No. 4 (2018)
- Kamiński Edmund, Kruglenja Viktor Evgenevič, Kocuba Viktor Iofimovič, Maciej Kuboń, Šaršunov Vjačesłav Alekseevič, Trends in Improving the Structure of a Rotary Dryer , Agricultural Engineering : Vol. 20 No. 1 (2016)
- Jan Barwicki, Maciej Kuboń, Andrzej Marczuk, Development of New Technologies for Cattle Breeding Systems Taking Into Account Sustainable Environmental Conditions , Agricultural Engineering : Vol. 22 No. 2 (2018)
- Jan Radosław Kamiński, Maciej Kuboń, Irina Dmitrevna Ivanova, Andreev Viktorovich Sergutenko, The Analysis of the State Space of Management Process in the Industry Applying Expert Systems , Agricultural Engineering : Vol. 21 No. 2 (2017)
- Marcin Gaura, Maciej Kuboń, Zbigniew Kowalczyk, Dariusz Kwaśniewski, Zbigniew Daniel, Krzysztof Kapela, Quality Assessment of Delivery in the Supply Chain Optimization , Agricultural Engineering : Vol. 24 No. 3 (2020)
- Urszula Malaga-Toboła, Sylwester Tabor, Dariusz Kwaśniewski, Maciej Kuboń, Production Capacity and Workstations Load in the Animal Feed Production Process , Agricultural Engineering : Vol. 20 No. 1 (2016)
- Jan Radosław Kaminski, Maciej Kuboń, Evgenij Ivanovič Mazugin, Sergej Grigorevič Rubee, Cutting of Woody Shrubs at Melioration Objects by a Multi-Rotor Mower With Trapezoidal Knives , Agricultural Engineering : Vol. 20 No. 3 (2016)
- Dariusz Kwaśniewski, Maciej Kuboń, Economic Effectiveness of Straw Pellets Production , Agricultural Engineering : Vol. 20 No. 4 (2016)
- Maciej Sporysz, Maria Szczuka, Sylwester Tabor, Krzysztof Molenda, Maciej Kuboń, The Use of Cluster Analysis in Assessing the Sustainability of Organic Farms. Part I. Methodical Considerations , Agricultural Engineering : Vol. 23 No. 4 (2019)
- Miroslav Prístavka, Pavol Findura, Ivan Beloev, Maciej Kuboń, Veronika Hrdá, Stepan Kovalyshyn, Taras Shchur, Verification of the Measurement System in a Production Organization , Agricultural Engineering : Vol. 26 (2022)