AgricEng Logo

Optimization of Parameters of a Vibroconveyor System for Infrared Drying of Soy

Authors

DOI:

https://doi.org/10.2478/agriceng-2022-0013

Keywords:

experiment designs, D-efficiency criterion, mathematical model, drying

Abstract

This paper proposes a method to determine the optimal parameters for the drying of soybean using a kinematic vibration dryer. Among the main parameters of the investigated vibroconveyor are heat and mass transfer, physical and mechanical. The paper presents a mathematical model of the dependence of parameters of the soybean drying process of soybean built based on experimental data obtained by organizing an effective experiment plan with a sufficiently large number of factor levels. To determine the rational parameters for drying soybean, it is important to build the most accurate and adequate mathematical model, which will determine the most accurate values of the required parameters. For this purpose, it is recommended to conduct an experiment with as many levels of factors as possible. The article proposes an experiment established on a dedicated balanced orthogonal plan, which is optimal according to the D-efficiency criterion. Based on the experimental data, an adequate mathematical model of the dependence of the drying characteristics of soybean (moisture of the processed material (%), temperature inside the product layer (°С) on the parameters – vibration amplitude (mm), distance from the conveyor surface (mm), radiation power (Wt), weight (g·min−1). Following the analysis of the constructed mathematical model, optimal parameters of the developed vibroconveyor infrared dryer were substantiated. The main characteristics of the vibroconveryor mechanism of interoperational transportation of bulk products in the working area were also determined, and a technical and economic analysis of the developed oscillatory system was conducted.

References

Al Labadi, L. (2015). Some refinements on Fedorov’s algorithms for constructing D-optimal designs. Brazilian Journal of Probability and Statistics, 29(1), 53-70.10.1214/13-BJPS228

Atanazevich, V. I. (2000). Drying food. Reference Manual. Moscow: DeLi.

Atkinson, A. C., & Donev, A. N. (1989). The construction of exact D-optimum experimental designs with application to blocking response surface designs. Biometrika, 76(3), 515-526.10.1093/biomet/76.3.515

Atwood, C. L. (1973). Sequences converging to D-optimal designs of experiments. Annals of Mathematical Statistics. 1, 342-352.10.1214/aos/1176342371

Bandura, V., Turcan, O., & Palamarchuk, V. (2015). Experimental study of technological parameters of the process of infrared drying of a moving ball of oilseed crops. MOTROL Commission of Motorization and Energetics in Agriculture, 17(4), 211-214.

Bartel, R. G. & Sherbert, D. R. (2000). Introduction to Real Analysis. New York: Wiley.

Bulgakov, V., Nikolaenko, S., Kiurchev, S., Pascuzzi, S., Arak, M., Santoro, F., Olt, J. (2020). The theory of vibrational wave movement in drying grain mixture. Agronomy Research, 18(2), 360-375.

Cook, R. D., & Nachtrheim, C. J. (1980). A comparison of algorithms for constructing exact D-optimal designs. Technometrics, 22(3), 315-324.10.1080/00401706.1980.10486162

Faichuk, O., Voliak, L., Glowacki, S., Pantsyr, Y., Slobodian, S., Szeląg-Sikora, A., & Gródek-Szostak, Z. (2022). European Green Deal: Threats Assessment for Agri-Food Exporting Countries to the EU. Sustainability, 14, 3712.10.3390/su14073712

Ginzburg, A.S. (1973). Drying food, M.: Food industry, 528.

Ivanyshyn, V., Yermakov, S., Ishchenko, T., Mudryk, K. (2020). Calculation algorithm for the dynamic coefficient of vibro-viscosity and other properties of energy willow cuttings movement in terms of their unloading from the tanker. In E3S Web of Conferences, 154, 04005.10.1051/e3sconf/202015404005

Jung, J. S., & Yum, B. J. (1996). Construction of exact D-optimal designs by Tabu search. Computational Statistics & Data Analysis, 21(2), 181-191.10.1016/0167-9473(95)00014-3

Kiurchev, S., Verkholantseva, V., Kiurcheva, L., & Dumanskyi, O. (2020). Physical-mathematical modeling of the vibrating conveyor drying process of soybeans. Latvia University of Sciences and Techologies Faculty of Engineering. Jelgava, 991-996.10.22616/ERDev.2020.19.TF234

Kuhfeld, W. F. (2010). Experimental design, efficiency, coding, and choice designs. Marketing research methods in sas: Experimental design, choice, conjoint, and graphical techniques, 47-97.

Lutsiak, V., Hutsol, T., Kovalenko, N., Kwaśniewski, D., Kowalczyk, Z., Belei, S., & Marusei, T. (2021). Enterprise Activity Modeling in Walnut Sector in Ukraine. Sustainability, 13(23), 13027.10.3390/su132313027

Malkina, V., Kiurchev, S., Osadchyi, V., & Strokan, O. (2019). The formation of orthogonal balanced experiment designs based on special block matrix operations on the example of the mathematical modeling of the pneumatic gravity seed separator. In Modern Development Paths of Agricultural Production (pp. 111-119). Springer, Cham.10.1007/978-3-030-14918-5_12

Meyer, R. K., & Nachtsheim, C. J. (1995). The coordinate-exchange algorithm for constructing exact optimal experimental designs. Technometrics, 37(1), 60-69.10.1080/00401706.1995.10485889

Nguyen, N. K., & Miller, A. J. (1992). A review of some exchange algorithms for constructing discrete D-optimal designs. Computational Statistics & Data Analysis, 14(4), 489-498.10.1016/0167-9473(92)90064-M

Palamarchuk, I. P., Tsurkan, O. V., & Palamarchuk, V. I. (2015). The analysis of theoretical and experimental research results of infrared vibrowave conveyer dryer main parameters. TEKA. Commissionof Motorization and Power Industry in Agriculture, 15(4), 314-323.

Palamarchuk, I., Kiurchev, S., Kiurcheva, L., & Verkholantseva, V. (2019). Analysis of Main Process Characteristics of Infrared Drying in the Moving Layer of Grain Produce. In Modern Development Paths of Agricultural Production (pp. 317-322). Springer, Cham.10.1007/978-3-030-14918-5_33

Palamarchuk, I., Tsurkan, O., Palamarchuk, V., & Kharchenko, S. (2016). Research of competitiveness of vibrowave infrared conveyor dryer for postharvest processing of grain. Eastern-European Journal of Enterprise Technologies, 27(8), 79-85.10.15587/1729-4061.2016.65887

Palamarchuk, I.P., Drukovany, M.F., Pala-Marchuk, V.I., & Burova Z.A. (2017). Vibromechanical intensification of drying processes of oil-containing raw materials: monograph row. “COMPRINT”, 325.

Sagnol, G., & Harman, R. (2015). Computing exact $ D $-optimal designs by mixed integer second-order cone programming. The Annals of Statistics, 43(5), 2198-2224.10.1214/15-AOS1339

Samoychuk, K.O., Kiurchev, S.V., Yalpachik, V.F., Palyanichka, N.O., Verkholantseva, V.O., Lomeyko, O.P., (2020). Innovative technologies and equipment industries. Processing of crop products: A guide. Melitopol, 307.

Schneid, S. (2010). PAT in freeze drying: monitoring of product pesistance using non-invasive NIR-spectroscopic TDLAS measurements/S. Schneid, H. Gieseler. Proc. 7th World Meeting on Pharmaceutics, Biopharmaceutics and Pharmaceutical Technology, Valetta, Malta, March 8-11.

Schubert, H., Regier, M., & Knoerzer, K. (Eds.). (2005). The microwave processing of foods. Taylor & Francis US.10.1533/9781845690212

Tryhuba, A., Kubon, M., Tryhuba, I., Komarnitskyi, S., Tabor, S., Kwaśniewski, D., Faichuk, O., Hohol, T. (2022). Taxonomy and Stakeholder Risk Management in Integrated Projects of the European Green Deal. Energies, 15, 2015.10.3390/en15062015

Yermakov S., Hutsol T., Rozkosz A., Glowacki S., Slobodian S. (2021a). Evaluation of Effective Parameters of Biomass Heat Treatment in Processing for Solid Fuel. Engineering for Rural Development. 241, 1114-1119.10.22616/ERDev.2021.20.TF241

Yermakov, S., Hutsol, T., Glowacki S., Hulevskyi V., & Pylypenko V. (2021b). Primary Assessment of the Degree of Torrefaction of Biomass Agricultural Crops. Environment. Technologies. Resources, 241, 264-267.10.17770/etr2021vol1.6597

Yermakov, S., Taras, H., Mudryk, K., Dziedzic, K., & Mykhailova, L. (2019). The analysis of stochastic processes in unloadingthe energywillow cuttings from the hopper. Environment. Technologies. Resources. Proceedings of the International Scientific and Practical Conference, 3, 249-252.10.17770/etr2019vol3.4159

Yu, Y. (2011). D-optimal designs via a cocktail algorithm. Statistics and Computing, 21, 475-481.10.1007/s11222-010-9183-2

Downloads

Published

2022-09-13

Issue

Section

Articles

How to Cite

Optimization of Parameters of a Vibroconveyor System for Infrared Drying of Soy. (2022). Agricultural Engineering , 26, 157-166. https://doi.org/10.2478/agriceng-2022-0013

Most read articles by the same author(s)

<< < 1 2 3 > >>