AgricEng Logo

Determination of Ways of Improving the Process of Separation of Seed Materials on the Working Surface of the Pneumatic Sorting Table

Authors

DOI:

https://doi.org/10.2478/agriceng-2024-0005

Keywords:

process of separation, seed density, pneumatic sorting table, pseudoliquid, physical and mechanical variables, seed materials

Abstract

The object of the study is the process of separation of seed material according to the seed density on the working surface of the pneumatic sorting table. The main defining design variables and linkage parameters of the equipment are analyzed, which realizes the process of separation of seed materials, and is coordinated with physical and mechanical variables of raw materials. The principles of modeling of seed material layer movement as a multiphase medium are provided. Under the effect of working surface vibrations and the power of an airstream the layer take on the properties of pseudoliquid. The criteria of chosen variables are presented, on which depend quality and quantity indicators of the separation process of seed materials according to the seed density. Optimal values of the separator linkage parameters are analytically determined and dependence diagrams are built. Secant lines of surfaces for a concrete crop (raw material) are performed. The “purity” of heavy fraction during the variation of indicated parameters is studied. It is proved that there are differences in types of the dependences: different decreasing of functions and increasing of airstream velocity. It is obvious that this nature is determined by difference in density of original raw materials. This way the smallest influence a change in the air-stream velocity causes to soybean raw material, as soybean has the biggest density. At the same time, the biggest affect is provoked on sunflower seeds, which have the smallest density among the used types of raw materials, as well as a triangle form.

It is determined that the maximal frequency of the basic fraction, gained by the separation of wheat seed material on PST, is obtained under the airstream velocity in the range 1.3-1.5 m·s−1. For corn the rational air-stream velocity falls in the range 1.3-1.6 m·s−1, for sunflower – 1.2-1.4 m·s−1, for soybean – 1.2-1.4 m·s−1. These figures are valid under the condition of using the relevant rational decisions of frequency and amplitude of vibrations of pneumatic sorting table deck during the separation of grain mixtures, as well as longitudinal and transverse angles of inclination. The veracity of experimental studying results is proved by the corresponding theoretical models of the process.

References

Aliiev E., Gavrilchenko A., Tesliuk H., Tolstenko A. & Koshul’ko V. (2019). Improvement of the sunflower seed separation process efficiency on the vibrating surface. Acta Periodica Technologica, 50, 12-22.

Anders, A. (2023). Modeling the Shape of Wheat Kernels with the Use of Solids of Revolution. Agricultural Engineering, 27(1), 187-202. https://doi.org/10.2478/agriceng-2023-0014.

Bredykhin, V., Bogomolov, A., Slipchenko, V., Kis-Korkishchenko, L., Ivashchenko, S. & Tikunov, T. Scientific basis of thrifty preparation of seeds with improved biological potential: monograph. Kharkiv: State Biotechnological University, 2023. pp. 401.

Bredykhin, V., Gurskyi, P., Alfyorov, O., Bredykhina, K. & Pak A. (2021). Improving the mechanical-mathematical model of grain mass separation in a fluidized bed. European Journal of Enterprise Technologies, 3(1), 79-86. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3885915

Bredykhin, V., Tikunov, S., Slipchenko, M., Alfyorov, O., Bogomolov, A., Shchur, T., Kocira, S., Kiczorowski, P. & Paslavskyy, R. (2023). Improving efficiency of corn seed separation and calibration process. Agricultural Engineering, 27(1), 241-253. https://doi.org/10.2478/agriceng-2023-0018

Clark B. (1983). Cleaning seeds by fluidized bed medium. Transac-tions of the ASAE, 4, 987-990.

Duan, G., Chen, B., Koshizuka, S. & Xiang, H. (2017). Stable multiphase moving particle semi-implicit method for incompressible interfacial flow. Computer Methods in Applied Mechanics and Engineering, 318, 636–666. doi: https://doi.org/10.1016/j.cma.2017.01.002.

Dziki, D. (2023). The Latest Innovations in Wheat Flour Milling: A Review. Agricultural Engineering, 27(1), 147-162. https://doi.org/10.2478/agriceng-2023-0011.

Havrylenko Y., Kholodniak Y., Halko S., Vershkov O., Miroshnyk O.,, Suprun O., Dereza O., Shchur T. & Śrutek M. (2021). Representation of a monotone curve by a contour with regular change in curvature. Entropy, 23(7), 923, https://doi.org/10.3390/e23070923

Havrylenko Y., Kholodniak Y., Halko S., . Vershkov O., Bondarenko L., Suprun O., Miroshnyk O Shchur T., Śrutek M. & Gackowska M. (2021). Interpolation with specified error of a point series belonging to a monotone curve. Entropy, 23(5), 493. https://doi.org/10.3390/e23050493.

Kaliniewicz, Z., Choszcz, D. & Lipiński, A. (2022). Determination of Seed Volume Based on Selected Seed Dimensions. Applied Sciences, 12(18), 9198. https://doi.org/10.3390/app12189198.

Karaiev, O., Bondarenko, L., Halko, S., Miroshnyk, O., Vershkov, O., Karaieva, T., Shchur, T., Findura, P. & Prístavka M. (2021). Mathematical modelling of the fruit-stone culture seeds calibration process using flat sieves. Acta Technologica Agriculturae, 24(3), 119-123. https://doi.org/10.2478/ata-2021-0020.

Kroulík, M., Hůla, J., Rybka, A., & Honzík, I. (2016). Pneumatic conveying characteristics of the seeds in a vertical ascending airstream. Research in Agricultural Engineering, 62(2), 56-63. doi: http://doi.org/10.17221/32/2014-rae.

Lezhenkin, O., Halko, S., Miroshnyk, O., Vershkov, O., Lezhenkin, I., Suprun, O., Shchur, T., Kruszelnicka, W. & Kasner, R. (2021). Investigation of the separation of combed heap of winter wheat. Journal of Physics: Conference Series, 1781(1), 012016. https://doi.org/10.1088/1742-6596/1781/1/012016.

Li, N., Xu, R., Duan, P. & Li, Y. (2018). Control of grain size in rice. Plant Reproduction, 31 (3), 237–251. doi: https://doi.org/10.1007/s00497-018-0333-6.

Linenko, A., Aipov, R., Yarullin, R., Gabitov, I., Tutkatov, M. & Mudasirov, S. (2018). Exsperimental vibro-centrifugal grain separator with linear asinchronicus electric drive. Journal of Engineering and Applied Science, 13, 6551-6557. Available at: http://10.36478/jeasci.2018.6551.6557.

Nesterenko, A.V., Leshchenko, S.M., Vasylkovskyi, V. & Petrenko, D.I. (2017). Analytical assessment of the pneumatic separation quality in the process of grain multilayer feeding. INMATEH-Agricultural Engineering. 53(3), 54-75. http://zbirniksgm.kntu.kr.ua/eng/archive/49/49_Bohatyrov_eng.html.

Olshanskii, V., Olshanskii, A., Kharchenko, S. & Kharchenko, F. (2016). About motion of grain mixture of variable porosity in the cylindrical sieve of vibrocentrifuge. Teka Commission of Motorization and Power Industry in Agriculture, 16(3), 31-34.

Olshanskiy, V., Burlaka, V. & Slipchenko, M. (2018). Free oscillations of an oscillator with nonlinear positional friction. Ukrainian Journal of Mechanical Engineering and Materials Science. Vol.4. 2(8), 50-57. https://doi.org/10.23939/ujmems2018.02.050.

Peniak, K. & Nowacki, K.(2023). Work Safety in the Mill - Case Study. Agricultural Engineering, 27(1), 135-145. https://doi.org/10.2478/agriceng-2023-0010.

Piven, M. (2017). Numerical solution of the problem of spatial movement of a loose mixture in a vibrolot. Teka Komisji Motoryzacji i Energetyki Rolnictwa, 17(2), 19-28.

Piven, M., Volokh, V., Piven, A. & Kharchenko, S. (2018). Research into the process of loading the surface of a vibrosieve when a loose mixture is fed unevenly. Eastern-European Journal of Enterprise Technologies, 1(96), 62-70. https://doi.org/10.15587/1729-4061.2018.149739

Salemi, E., Tessari, U. & Mastrocicco, N.C.M. (2010). Improved gravitational grain size separation method. Applied Clay Science, 48(4), 612-614.

Stepanenko, S.P. & Dnes, V.I. (2021). Popadiuk. Investigation of channel parameters for removal of dust and light garbage impurities from the pneumatic separator. Innovative development of resource-saving technologies and sustainable use of natural resources. Glevakha, 4(99), 69-75.

Stepanenko, S.P. & Kotov, B.I. (2018). Pneumonitis fractionation of grain materials in air streams of variable structure, TEKA. An International Quarterly Journal on Motorization, Vehicle Operation, Energy Efficiency and Mechanical Engineering, 12(2), 69-74.

Tishchenko, L., Kharchenko S., Kharchenko, F., Bredykhin, V. & Tsurkan, O. (2016). Identification of a mixture of grain particle velocity through the holes of the vibrating sieves grain separators. Eastern-European Journal of Enterprise Technologies, 2(3), 80-86.

Wang, P., Deng, X. & Jiang, S. (2019). Global warming grain production and ats efficiency: Case study of major grain production region. Ecological Indicators, 105, 563-570. doi: https://doi.org/10.1016/j.ecolind.2018.05.022.

Zubko,V., Sirenko, V., Kuzina, T., Onychko, V., Sokolik, S., Roubik, H., Koszel, M. & Shchur, T. (2022). Modelling Wheat Grain Flow During Sowing Based on the Model of Grain with Shifted Center of Gravity. Agricultural Engineering, 26(1), 25-37. https://doi.org/10.2478/agriceng-2022-0003.

Downloads

Published

2024-12-28

Issue

Section

Articles

How to Cite

Determination of Ways of Improving the Process of Separation of Seed Materials on the Working Surface of the Pneumatic Sorting Table. (2024). Agricultural Engineering , 28, 51-70. https://doi.org/10.2478/agriceng-2024-0005

Most read articles by the same author(s)

1 2 3 4 > >>